Lớp 1

Đề thi lớp 1

Lớp 2

Lớp 2 - Kết nối tri thức

Lớp 2 - Chân trời sáng tạo

Lớp 2 - Cánh diều

Tài liệu tham khảo

Lớp 3

Lớp 3 - Kết nối tri thức

Lớp 3 - Chân trời sáng tạo

Lớp 3 - Cánh diều

Tài liệu tham khảo

Lớp 4

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Lớp 5

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Lớp 6

Lớp 6 - Kết nối tri thức

Lớp 6 - Chân trời sáng tạo

Lớp 6 - Cánh diều

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 7

Lớp 7 - Kết nối tri thức

Lớp 7 - Chân trời sáng tạo

Lớp 7 - Cánh diều

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 8

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 9

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 10

Lớp 10 - Kết nối tri thức

Lớp 10 - Chân trời sáng tạo

Lớp 10 - Cánh diều

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 11

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 12

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

IT

Ngữ pháp Tiếng Anh

Lập trình Java

Phát triển web

Lập trình C, C++, Python

Cơ sở dữ liệu


*

Nhằm giúp các bạn ôn luyện và giành được kết quả cao trong kì thi tuyển sinh vào lớp 10, nhansugioi.com biên soạn tuyển tập Đề thi vào lớp 10 môn Toán (có đáp án) theo cấu trúc ra đề Trắc nghiệm - Tự luận mới. Cùng với đó là các dạng bài tập hay có trong đề thi vào lớp 10 môn Toán với phương pháp giải chi tiết. Hi vọng tài liệu này sẽ giúp học sinh ôn luyện, củng cố kiến thức và chuẩn bị tốt cho kì thi tuyển sinh vào lớp 10 môn Toán năm 2022.

Bạn đang xem: Đề thi vào lớp 10 môn toán

I/ Đề thi môn Toán vào lớp 10 (không chuyên)

Bộ Đề thi vào lớp 10 môn Toán năm 2022 có đáp án (Trắc nghiệm - Tự luận)

Bộ Đề thi vào lớp 10 môn Toán năm 2022 có đáp án (Tự luận)

Bộ Đề thi vào lớp 10 môn Toán TP Hà Nội năm 2021 - 2022 có đáp án

II/ Đề thi môn Toán vào lớp 10 (chuyên)

III/ Các dạng bài tập ôn thi vào lớp 10 môn Toán

Tài liệu ôn thi vào lớp 10 môn Toán

Sở Giáo dục và Đào tạo .....

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học 2021 - 2022

Thời gian: 120 phút

Câu 1: (2 điểm) Rút gọn biểu thức sau:

a) A=12−253+60.

b) B=4xx−3.x2−6x+9x với 0 x2−2mx+m2−m+3=0 (1), với m là tham số.

a) Giải phương trình (1) với m = 4.

b) Tìm các giá trị của m để phương trình (1) có hai nghiệm và biểu thức: P=x1x2−x1−x2 đạt giá trị nhỏ nhất.

Câu 3: (1,5 điểm)

Tình cảm gia đình có sức mạnh phi trường. Bạn Vì Quyết Chiến – Cậu bé 13 tuổi qua thương nhớ em trai của mình đã vượt qua một quãng đường dài 180km từ Sơn La đến bệnh viện Nhi Trung ương Hà Nội để thăm em. Sau khi đi bằng xe đạp 7 giờ, bạn ấy được lên xe khách và đi tiếp 1 giờ 30 phút nữa thì đến nơi. Biết vận tốc của xe khách lớn hơn vận tốc của xe đạp là 35 km/h. Tính vận tốc xe đạp của bạn Chiến.

Câu 4: (3,0 điểm)

Cho đường tròn (O) có hai đường kính AB và MN vuông góc với nhau. Trên tia đối của tia MA lấy điểm C khác điểm M. Kẻ MH vuông góc với BC (H thuộc BC).

a) Chứng minh BOMH là tứ giác nội tiếp.

b) MB cắt OH tại E. Chứng minh ME.MH = BE.HC.

c) Gọi giao điểm của đường tròn (O) với đường tròn ngoại tiếp ∆MHC là K. Chứng minh 3 điểm C, K, E thẳng hàng.

Câu 5: (1,0 điểm) Giải phương trình: 5x2+27x+25−5x+1=x2−4.

 

HƯỚNG DẪN GIẢI ĐỀ SỐ 03

Câu 1:

a) A=12−253+60=36−215+215=36=6

b) Với 0 B=4xx−3.x2−6x+9x =2xx−3.x−32x=−2x3−x.x−3x=−2x3−x3−xx=−2

Câu 2:

1) Vì đồ thị hàm số đi qua điểm M(1; –1) nên a+ b = -1

đồ thị hàm số đi qua điểm N(2; 1) nên 2a + b = 1

Yêu cầu bài toán a+b=−12a+b=1⇔a=2b=−3

Vậy hàm số phải tìm là y = 2x – 3.

2)

a) Với m = 4, phương trình (1) trở thành: x2−8x+15=0. Có Δ=1>0

Phương trình có hai nghệm phân biệt x1=3; x2=5;

b) Ta có: ∆" = −m2−1.m2−m+3=m2−m2+m−3=m−3.

Phương trình (1) có hai nghiệm x1, x2 khi ∆" 0 ⇔ m−3≥0⇔m≥3

Với m≥3, theo định lí Vi–ét ta có: x1+x2=2mx1.x2=m2−m+3

Theo bài ra: P=x1x2−x1−x2=x1x2−(x1+x2)

Áp đụng định lí Vi–ét ta được:

P=m2−m+3−2m=m2−3m+3 =m(m−3)+3

Vì m≥3 nên m(m−3)≥0 , suy ra P≥3. Dấu " = " xảy ra khi m = 3.

Vậy giá trị nhỏ nhất của P là 3 khi m = 3.

Câu 3:

Đổi 1 giờ 30 phút = 1,5 giờ.

Gọi vận tốc xe đạp của bạn Chiến là x (km/h, x > 0)

Vận tốc của ô tô là x + 35 (km/h)

Quãng đường bạn Chiến đi bằng xe đạp là: 7x (km)

Quãng đường bạn Chiến đi bằng ô tô là: 1,5(x + 35)(km)

Do tổng quãng đường bạn Chiến đi là 180km nên ta có phương trình:

7x + 1,5(x + 35) = 180 7x + 1,5x + 52,2 = 180 8,5x = 127,5 x = 15

(thỏa mãn)

Vậy bạn Chiến đi bằng xe đạp với vận tốc là 15 km/h.

Câu 4:

*

a) Ta có: MOB^=900 (do AB⊥MN) và MHB^=900(do MH⊥BC)

Suy ra: MOB^+MHB^=900+900=1800

=> Tứ giác BOMH nội tiếp.

b) ∆OMB vuông cân tại O nên OBM^=OMB^ (1)

Tứ giác BOMH nội tiếp nên OBM^=OHM^ (cùng chắn cung OM)

và OMB^=OHB^ (cùng chắn cung OB) (2)

Từ (1) và (2) suy ra: OHM^=OHB^

=> HO là tia phân giác của MHB^ => MEBE=MHHB (3)

Áp dụng hệ thức lượng trong ∆BMC vuông tại M có MH là đường cao

Ta có: HM2=HC.HB⇒HMHB=HCHM (4)

Từ (3) và (4) suy ra: MEBE=HCHM5⇒ME.HM=BE.HC (đpcm)

c) Vì MHC^=900(do MH⊥BC) nên đường tròn ngoại tiếp ∆MHC có đường kính là MC

⇒MKC^=900 (góc nội tiếp chắn nửa đường tròn)

MN là đường kính của đường tròn (O) nên MKN^=900 (góc nội tiếp chắn nửa đường tròn)

⇒MKC^+MKN^=1800

=> 3 điểm C, K, N thẳng hàng (*)

∆MHC ∽ ∆BMC (g.g) ⇒HCMH=MCBM. 

Mà MB = BN (do ∆MBN cân tại B)

=>HCHM=MCBN, kết hợp với MEBE=HCHM (theo (5) )

Suy ra: MCBN=MEBE . Mà EBN^=EMC^=900 => ∆MCE ∽ ∆BNE (c.g.c)

⇒MEC^=BEN^, mà MEC^+BEC^=1800 (do 3 điểm M, E, B thẳng hàng)

⇒BEC^+BEN^=1800

=> 3 điểm C, E, N thẳng hàng (**)

Từ (*) và (**) suy ra 4 điểm C, K, E, N thẳng hàng

=> 3 điểm C, K, E thẳng hàng (đpcm)

Câu 5: ĐKXĐ: x≥2

Ta có: 5x2+27x+25−5x+1=x2−4

⇔5x2+27x+25=5x+1+x2−4

⇔5x2+27x+25=x2−4+25x+25+10(x+1)(x2−4)

⇔4x2+2x+4=10x+1)(x2−4)⇔2x2+x+2=5(x+1)(x2−4) (1)

Cách 1:

(1) ⇔x2−2x−44x2−13x−26=0

Giải ra được:

x=1−5(loại); x=1+5(nhận); x=13+3658 (nhận); x=13−3658 (loại)

Cách 2:

(1) ⇔5x2−x−2x+2=2x2−x−2+3x+2 (2)

Đặt a=x2−x+2; b=x+2 (a≥0; b≥0)

Lúc đó, phương trình (2) trở thành:

5ab=2a2+3b2⇔2a2−5ab+3b2=0⇔a−b2a−3b=0⇔a=b2a=3b (*)

 – Với a = b thì x2−x−2=x+2⇔x2−2x−4⇔x=1−5(ktm)x=1+5(tm)

 – Với 2a = 3b thì 2x2−x−2=3x+2⇔4x2−13x−26=0⇔x=13+3658 (tm)x=13−3658 (ktm)

Vậy phương trình đã cho có hai nghiệm: x=1+5 và x=13+3658 .

Sở Giáo dục và Đào tạo .....

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học 2021 - 2022

Thời gian: 120 phút

Sở Giáo dục và Đào tạo .....

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học 2021 - 2022

Thời gian: 120 phút

Phần I. Trắc nghiệm (2 điểm)

Câu 1: Điều kiện xác định của biểu thức

*
là:

A.x ≠ 0 B.x ≥ 1 C.x ≥ 1 hoặc x 2 và đường thẳng (d) y =

*
+ 3

A. (2; 2)B. ( 2; 2) và (0; 0)

C.(-3; ) D.(2; 2) và (-3; )

Câu 5: Giá trị của k để phương trình x2 + 3x + 2k = 0 có 2 nghiệm trái dấu là:

A. k > 0B. k 2 D. k (2 điểm)

1) Thu gọn biểu thức

*

2) giải phương trình và hệ phương trình sau:

a) 3x2 + 5x - 8 = 0

b) (x2 + 5)2 = 3(x2 + 5) + 4

*

Bài 2: (1,5 điểm) Trong mặt phẳng tọa độ Oxy cho Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

a) Với m = -1 , hãy vẽ 2 đồ thị hàm số trên cùng một hệ trục tọa độ

b) Tìm m để (d) và (P) cắt nhau tại 2 điểm phân biệt : A (x1; y1 );B(x2; y2) sao cho tổng các tung độ của hai giao điểm bằng 2 .

Bài 3: (1 điểm) Rút gọn biểu thức sau:

*

Tìm x để A (3,5 điểm) Cho đường tròn (O) có dây cung CD cố định. Gọi M là điểm nằm chính giữa cung nhỏ CD. Đường kính MN của đường tròn (O) cắt dây CD tại I. Lấy điểm E bất kỳ trên cung lớn CD, (E khác C,D,N); ME cắt CD tại K. Các đường thẳng NE và CD cắt nhau tại P.

a) Chứng minh rằng :Tứ giác IKEN nội tiếp

b) Chứng minh: EI.MN = NK.ME

c) NK cắt MP tại Q. Chứng minh: IK là phân giác của góc EIQ

d) Từ C vẽ đường thẳng vuông góc với EN cắt đường thẳng DE tại H. Chứng minh khi E di động trên cung lớn CD (E khác C, D, N) thì H luôn chạy trên một đường cố định.

Phần I. Trắc nghiệm

1.C2.D3.A4.D
5.B6.A7.D8.B

Phần II. Tự luận

Bài 1:

*

2) a) 3x2 + 5x - 8 = 0

Δ = 52 - 4.3.(-8) = 121 => √Δ = 11

*

Vậy phương trình đã cho có tập nghiệm là S =

*

b) (x2 + 3)2 = 3(x2 + 3) + 4

Đặt x2 + 3 = t (t ≥ 3), phương trình đã cho trở thành

t2 - 3t - 4 = 0

Δ = 32 - 4.(-4) = 25> 0

Phương trình có 2 nghiệm phân biệt :

*

Do t ≥ 3 nên t = 4

Với t = 4, ta có: x2 + 3 = 4 ⇔ x2 = 1 ⇔ x = ±1

Vậy phương trình đã cho có 2 nghiệm x = ± 1

*

Bài 2:

Trong mặt phẳng tọa độ Oxy cho Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

a) Với m = 1; (d): y = 2x – 1

Bảng giá trị

x01
y = 2x – 1-11

(P) : y = x2

Bảng giá trị

x -2 -1 0 1 2
y = x2 4 1 0 1 4

Đồ thị hàm số y = x2 là đường parabol nằm phía trên trục hoành, nhận Oy làm trục đối xứng và nhận điểm O(0; 0) là đỉnh và điểm thấp nhất

*

b) cho Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

Phương trình hoành độ giao điểm của (P) và (d) là:

x2 = 2mx - 2m + 1

⇔ x2 - 2mx + 2m - 1 = 0

Δ" = m2 - (2m - 1)=(m - 1)2

(d) và (P) cắt nhau tại 2 điểm phân biệt khi và chỉ khi phương trình hoành độ giao điểm có 2 nghiệm phân biệt

⇔ Δ" > 0 ⇔ (m - 1)2 > 0 ⇔ m ≠ 1

Khi đó (d) cắt (P) tại 2 điểm A(x1, 2mx1 – 2m + 1) ; B ( x2, 2mx2 – 2m + 1)

Theo định lí Vi-et ta có: x1 + x2 = 2m

Từ giả thiết đề bài, tổng các tung độ giao điểm bằng 2 nên ta có:

2mx1 – 2m + 1 + 2mx2 – 2m + 1 = 2

⇔ 2m (x1 + x2) – 4m + 2 = 2

⇔ 4m2 - 4m = 0 ⇔ 4m(m - 1) = 0

*

Đối chiếu với điều kiện m ≠ 1, thì m = 0 thỏa mãn.

Bài 3:

*

A > 0 ⇔

*
> 0 ⇔ 5 - 5√x > 0 ⇔ √x 0 khi 0 ∠KIN = 90o

Xét tứ giác IKEN có:

∠KIN = 90o

∠KEN = 90o (góc nội tiếp chắn nửa đường tròn)

=> ∠KIN + ∠KEN = 180o

=> Tứ giác IKEN là tứ giác nội tiếp

b) Xét ΔMEI và ΔMNK có:

∠NME là góc chung

∠IEM = ∠MNK ( 2 góc nội tiếp cùng chắn cung IK)

=> ΔMEI ∼ ΔMNK (g.g)

*
=>EI.MN = NK.ME

c) Xét tam giác MNP có:

ME ⊥ NP; PI ⊥ MN

ME giao PI tại K

=> K là trực tâm của tam giác MNP

=> ∠NQP = 90o

Xét tứ giác NIQP có:

∠NQP = 90o

∠NIP = 90o

=> 2 đỉnh Q, I cùng nhìn cạnh NP dưới 1 góc bằng nhau

=> tứ giác NIQP là tứ giác nội tiếp

=> ∠QIP = ∠QNP (2 góc nội tiếp cùng chắn cung PQ)(1)

Mặt khác IKEN là tứ giác nội tiếp

=> ∠KIE = ∠KNE (2 góc nội tiếp cùng chắn cung KE)(2)

Từ (1) và (2)

=> ∠QIP = ∠KIE

=> IE là tia phân giác của ∠QIE

d) Ta có:

*

Mà ∠DEM = ∠MEC (2 góc nội tiếp chắn 2 cung bằng nhau)

=> ∠EHC = ∠ECH => ΔEHC cân tại E

=> EN là đường trung trực của CH

Xét đường tròn (O) có: Đường kính OM vuông góc với dây CD tại I

=> NI là đường trung trực của CD => NC = ND

EN là đường trung trực của CH => NC = NH

=> N là tâm đường tròn ngoại tiếp tam giác DCH

=> H ∈ (N, NC)

Mà N, C cố định => H thuộc đường tròn cố định

Sở Giáo dục và Đào tạo .....

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học 2021 - 2022

Thời gian: 120 phút

Bài 1 : ( 1,5 điểm)

1) Rút gọn biểu thức sau:

*

2) Cho biểu thức

*

a) Rút gọn biểu thức M.

b) Tìm các giá trị nguyên của x để giá trị tương ứng của M nguyên.

Bài 2 : ( 1,5 điểm)

1) Tìm m để hai phương trình sau có ít nhất một nghiệm chung:

2x2 – (3m + 2)x + 12 = 0

4x2 – (9m – 2)x + 36 = 0

2) Tìm hệ số a, b của đường thẳng y = ax + b biết đường thẳng trên đi qua hai điểm là

(1; -1) và (3; 5)

Bài 3 : ( 2,5 điểm)

1) Cho Phương trình :x2 + (m - 1) x + 5m - 6 = 0

a) giải phương trình khi m = - 1

b) Tìm m để 2 nghiệm x1 và x2 thỏa mãn hệ thức: 4x1 + 3x2 = 1

2) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình

Một công ty vận tải điều một số xe tải để chở 90 tấn hàng. Khi đến kho hàng thì có 2 xe bị hỏng nên để chở hết số hàng thì mỗi xe còn lại phải chở thêm 0,5 tấn so với dự định ban đầu. Hỏi số xe được điều đến chở hàng là bao nhiêu xe? Biết rằng khối lượng hàng chở ở mỗi xe là như nhau.

Bài 4 : ( 3,5 điểm)

1) Cho (O; R), dây BC cố định không đi qua tâm O, A là điểm bất kì trên cung lớn BC. Ba đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.

a) Chứng minh tứ giác HDBF, BCEF nội tiếp

b) K là điểm đối xứng của A qua O. Chứng minh HK đi qua trung điểm của BC

c) Gỉa sử ∠BAC = 60o. Chứng minh Δ AHO cân

2) Một hình chữ nhật có chiều dài 3 cm, chiều rộng bằng 2 cm, quay hình chữ nhật này một vòng quanh chiều dài của nó được một hình trụ. Tính diện tích toàn phần của hình trụ.

Bài 5 : ( 1 điểm)

1) Cho a, b là 2 số thực sao cho a3 + b3 = 2. Chứng minh:

0 √x - 1 ∈ Ư (2)

√x - 1 ∈ {±1; ±2}

Ta có bảng sau:

√x-1- 2-112
√x-1023
xKhông tồn tại x049

Vậy với x = 0; 4; 9 thì M nhận giá trị nguyên.

Xem thêm: Cách Điều Trị Viêm Da Cơ Địa Ở Bàn Tay, Ngón Tay Hiệu Quả Không Tái Phát

Bài 2 :

1)

2x2 – (3m + 2)x + 12 = 0

4x2 – (9m – 2)x + 36 = 0

Đặt y = x2,khi đó ta có:

*

Giải (*):

(6 - 3m)x = -12

Phương trình (*) có nghiệm 6 - 3m ≠ 0 m ≠ 2

Khi đó, phương trình có nghiệm:

*

Theo cách đặt, ta có: y = x2

*

=>16(m-2) = 16

m = 3

Thay m= 3 vào 2 phương trình ban đầu,ta có:

*

Vậy khi m =3 thì hai phương trình trên có nghiệm chung và nghiệm chung là 4

2) Tìm hệ số a, b của đường thẳng y = ax + b biết đường thẳng trên đi qua hai điểm là

(1; -1) và (3; 5)

Đường thẳng y = ax + b đi qua hai điểm (1; -1) và (3; 5) nên ta có:

*

Vậy đường thẳng cần tìm là y = 2x – 3

Bài 3 :

1) Cho Phương trình : x2 + (m - 1)x + 5m - 6 = 0

a) Khi m = -1, phương trình trở thành:

x2 - 2x - 11 = 0

Δ" = 1 + 11=12 => √(Δ") = 2√3

Phương trình có nghiệm:

x1 = 1 + 2√3

x2 = 1 - 2√3

Vậy hệ phương trình có tập nghiệm là:

S ={1 + 2√3; 1 - 2√3}

b)

x2 + (m - 1)x + 5m - 6 = 0

Ta có:

Δ = (m - 1)2 - 4(5m - 6)

Δ = m2 - 2m + 1 - 20m + 24 = m2 - 22m + 25

Phương trình có hai nghiệm ⇔ Δ ≥ 0 ⇔ m2 - 22m + 25 ≥ 0,(*)

Theo hệ thức Vi-ét ta có:

*

Theo đề bài ta có:

4x1 + 3x2 =1 ⇔ x1 + 3(x1 + x2 ) = 1

⇔ x1 + 3(1 - m) = 1

⇔ x1= 3m - 2

=> x2 = 1 - m - x1 = 1 - m - (3m - 2) = 3 - 4m

Do đó ta có:

(3m - 2)(3 - 4m) = 5m - 6

⇔ 9m - 12m2 - 6 + 8m = 5m - 6

⇔ - 12m2 + 12m = 0

⇔ -12m(m - 1) = 0

*

Thay m = 0 vào (*) thấy thảo mãn

Thay m = 1 vào (*) thấy thảo mãn

Vậy có hai giá trị của m thỏa mãn bài toán là m = 0 và m = 1.

2)

Gọi số lượng xe được điều đến là x (xe) (x > 0; x ∈ N)

=>Khối lượng hàng mỗi xe chở là:

*
(tấn)

Do có 2 xe nghỉ nên mỗi xe còn lại phải chở thêm 0,5 tấn so với dự định nên mỗi xe phải chở:

*

Khi đó ta có phương trình:

*
.(x-2)=90

=>(180 + x)(x - 2) = 180x

x2 - 2x - 360 = 0

*

Vậy số xe được điều đến là 20 xe

Bài 4 :

*

a) Xét tứ giác BDHF có:

∠BDH = 90o (AD là đường cao)

∠BFH = 90o (CF là đường cao)

=>∠BDH + ∠BFH = 180o

=> Tứ giác BDHF là tứ giác nội tiếp

Xét tứ giác BCEF có:

∠BFC = 90o (CF là đường cao)

∠BEC = 90o (BE là đường cao)

=> 2 đỉnh E và F cùng nhìn cạnh BC dưới 1 góc vuông

=> Tứ giác BCEF là tứ giác nội tiếp

b) Ta có:

∠KBA) = 90o (góc nội tiếp chắn nửa đường tròn)

=>KB⊥AB

Mà CH⊥AB (CH là đường cao)

=> KB // CH

Tương tự:

∠KCA) = 90o (góc nội tiếp chắn nửa đường tròn)

=>KC⊥AC

BH⊥AC (BH là đường cao)

=> HB // CK

Xét tứ giác BKCF có:

KB // CH

HB // CK

=> Tứ giác BKCH là hình bình hành

=> Hai đường chéo BC và KH cắt nhau tại trung điểm mỗi đường

=> HK đi qua trung điểm của BC

c) Gọi M là trung điểm của BC

Xét tam giác AHK có:

O là trung điểm của AK

M là trung điểm của BC

=> OM là đường trung bình của tam giác AHK

=> OM = AH (1)

ΔBOC cân tại O có OM là trung tuyến

=> OM là tia phân giác của ∠BOC

=> ∠MOC = ∠BAC = 60o (= ∠BOC )

Xét tam giác MOC vuông tại M có:

OM = OC.cos⁡(MOC) = OC.cos⁡60o= OC = OA (2)

Từ (1) và (2) => OA = AH => ΔOAH cân tại A

2)

Quay hình chữ nhật vòng quanh chiều dài được một hình trụ có bán kính đáy là R= 2 cm, chiều cao là h = 3 cm