Nếu tại \(x = a,\) đa thức $P(x)$ có giá trị bằng $0$ thì ta nói $a$ (hoặc $x = a$) là một nghiệm của đa thức đó.

Bạn đang xem: Nghiệm của đa thức một biến


Ví dụ: Tìm nghiệm của đa thức \(P(y) = 2y + 6\)

Giải

Từ \(2y + 6 = 0 \)\(\Rightarrow 2y = - 6 \Rightarrow y = - \dfrac{6}{2} = - 3\)

Vậy nghiệm của đa thức \(P(y)\) là $– 3.$

Số nghiệm của đa thức một biến

Một đa thức (khác đa thức không) có thể có \(1, 2, 3, ..., n\) nghiệm hoặc không có nghiệm nào.

Tổng quát: Số nghiệm của một đa thức (khác đa thức \(0\)) không vượt qua bậc của nó.

Xem thêm: Lý Thuyết Sinh 12 Bài 10 - Tương Tác Gen Và Tác Động Đa Hiệu Của Gen

2. Các dạng toán thường gặp

Dạng 1: Kiểm tra xem x=a có là nghiệm của đa thức P(x) hay không?

Phương pháp:

Ta tính \(P\left( a \right)\), nếu \(P\left( a \right) = 0\) thì \(x = a\) là nghiệm của đa thức \(P\left( x \right).\)

Dạng 2: Tìm nghiệm của đa thức

Phương pháp:

Để tìm nghiệm của đa thức \(P\left( x \right)\), ta tìm giá trị của \(x\) sao cho \(P\left( x \right) = 0.\)

Dạng 3: Chứng minh đa thức không có nghiệm

Phương pháp:

Để chứng minh đa thức \(P\left( x \right)\) không có nghiệm, ta chứng minh \(P\left( x \right)\) nhận giá trị khác \(0\) tại mọi giá trị của \(x.\)


*
Bình luận
*
Chia sẻ
Chia sẻ
Bình chọn:
4.6 trên 220 phiếu
>> (Hot) Đã có SGK lớp 7 kết nối tri thức, chân trời sáng tạo, cánh diều năm học mới 2022-2023. Xem ngay!
Bài tiếp theo
*


Luyện Bài Tập Trắc nghiệm Toán 7 - Xem ngay


Báo lỗi - Góp ý
*
*
*
*
*
*


TẢI APP ĐỂ XEM OFFLINE


*
*

× Báo lỗi góp ý
Vấn đề em gặp phải là gì ?

Sai chính tả Giải khó hiểu Giải sai Lỗi khác Hãy viết chi tiết giúp nhansugioi.com


Gửi góp ý Hủy bỏ
× Báo lỗi

Cảm ơn bạn đã sử dụng nhansugioi.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?

Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!


Họ và tên:


Gửi Hủy bỏ

Liên hệ | Chính sách

*

*

Đăng ký để nhận lời giải hay và tài liệu miễn phí

Cho phép nhansugioi.com gửi các thông báo đến bạn để nhận được các lời giải hay cũng như tài liệu miễn phí.